Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

نویسندگان

  • Marco Alfano
  • Gilles Lubineau
  • Glaucio H. Paulino
چکیده

Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load–displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes. 2014 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Evaluation of Seismic Response of Shallow Soil Deposits

This paper employs one-dimensional numerical ground response analysis models to investigate seismic response of shallow cohesive and non-cohesive soil deposits on vertical propagation of horizontal shear waves. Soil response is modelled by traditional equivalent-linear (EL) frequency-domain analysis using DEEPSOIL software and nonlinear (NL) time-domain analysis using OPENSEES software. The ana...

متن کامل

 The Quantification of Uncertainties in Production Prediction Using Integrated Statistical and Neural Network Approaches: An Iranian Gas Field Case Study

Uncertainty in production prediction has been subject to numerous investigations. Geological and reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is worthy to present the desired quantity with a probability distribution instead of a sing...

متن کامل

Prediction of Cohesive Sediment Erosion Rate and Analyzing the Effective Parameters Using Artificial Neural Network

Transferring mechanic of cohesive sediments are different from non-cohesive sediments. For determining the erosion rate of non-cohesive sediments, physical parameters such as average diameter and density are used, such as average diameter and density. Due to the nature of the cohesive sediments, their erosion rates are determined interrelated with the shear stress of the bed with fixed coeffici...

متن کامل

Patterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis

    Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...

متن کامل

Determination of long-term slip rates of faults in the eastern part of Iran plateau using finite element kinematic model

Since Iran plateau is located in the Alpine-Himalayan Orogenic belt, it is recognized as a region with a high seismic risk. Thus, investigation of geodynamic activities of the faults, their slip rates and corresponding deformation fields is very important for quantification of possible seismic risk in this region. The aim of this study is to analyze the tectonic features of eastern part of Iran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015